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* Environmental monitoring: many challenges

« Carbon nanomaterials: a few promises and many
ISSUes
« (Gas sensors employing carbon nanomaterials
— Carbon black and carbon nanofibres
— Carbon nanotubes
— Graphene
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Trace detection: many challenges
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-Particulate matter -

SOx, NOx, O3, VOCs,

CFCs, CH4, Pb, Hg,

explosives, warfare agents
Multimedia pollutants:
Heavy metals, Benzene,
PCBs,...
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Carbon nanomaterials: a few promises
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Carbon nanomaterials: a few promises
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NanoMat
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Carbon nanomaterials: and many issues

Carbon nanomaterials (CNMATS) show interesting properties for trace detection of
ambient pollutants BUT:

 There is a need for cost-effective, scalable production methods that retain the essential
properties of such materials ...

« ... and for tailoring surface properties via functionalization

« Contacting CNMATSs is non-trivial (e.g. material contamination, which affects response,
reproducibility...)

« High-quality vs low-quality CNMATSs dilemma

« The advancement of applications of carbon nanomaterials is hampered by their
biopersistence and pro-inflammatory action in vivo

Sl COST is supported E HHHHHHH ESF provides the COST Office
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Carbon nanomaterials

Activated carbon for pre-concentration

!Hysmal reac!ivation:

Carbonization: Material with carbon content is pyrolyzed at temperatures in
the range 600-900 °C, in absence of oxygen.

Activation/Oxidation: Raw material to oxidizing atmospheres at
temperatures in the range of 600-1200 °C.

Chemical activation: Prior to carbonization, the raw material is
impregnated with certain chemicals. The chemical is typically an acid,
strong base or a salt

-AC has grain size in the range of microns, surface
area of 500 to 1500 m?/g

- Total carbon content about 60%

- Pores in the 0.5 to 5 nm range

- Concentration factors up to 2000/mg

E. Llobet, Sensors and Actuators B 132
(2008) 90
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Carbon nanomaterials

Carbon black and carbon nanofibres
i - Produced by the incomplete combustion of

. : : heavy petroleum products

-Selectivity tuned by polymer matrix

- Dispersion by solvent/polymer sonication

- Response mechanism explained by

percolation theory

- CB: ~ 30 nm, 200 m?/g

- CNF: 70-250 nm, 70 um

Gas
molecules

R. Fu, Mat.Res.Bull. 41 (2006) 553 S.
Lewis, Anal. Chem, 70 (1998) 4177 N.S.
Lewis, Chem. Mater. 8 (1996) 2298
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Gas sensors employing carbon nanomaterials

Carbon bl_rack and carbon nanofibres
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Electraspun carbon nanofibers

Room temperature
detection of aromatic
VOCs at ppm level

J. Choi et al., Synthetic
Metals 162 (2012) 1513

COST is supported
by the EU Framework Programme

AR/R, X 100 (%)

Fig. 4. Response magnitude of electrospun PEDOT:PSS/MWCNT—COOH/PVP and

PEDOT:PSS/MWCNT-COOH/PVP
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PEDOT:PSS/PVP nanofibers upon cyclic exposure to benzene vapor at room 2ntract
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Carbon nanomaterials

Carbon nanotubes

il y
I T
-\-\-\-\-\--\'--_ i =
--"'--.._‘_\-_
ﬂ-__\_\_‘_\---
--If
In'
!
Ilrlll (re, ) zigzag
--------—-‘;---_u..___
Sy F l,l'
e ™

{rer) armchair

Chiral

- o

For a given (n,m) nanotube, if n = m, the nanotube is metallic; if n — m is a multiple of 3,
then the nanotube is semiconducting with a very small band gap, otherwise the nanotube

IS @ moderate semiconductor.
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Carbon nanomaterials

Carbon nanotubes

" Synthesi§ metfods

* Arc discharge: Nanotubes were observed in 1991 in the carbon soot of graphite
electrodes during an arc discharge. Yield: 30% of both SWNT and MWNT with few
defects

 Laser ablation: A pulsed laser vaporizes a graphite target in a high-temperature reactor
while an inert gas is bled into the chamber. Co+Ni catalysts increase yield to 70% mostly
SWNT (expensive)

» Chemical vapor deposition: During CVD, a substrate is prepared with a layer of metal
catalyst particles. The substrate is heated to approximately 700°C and a process gas
(such as ammonia, nitrogen or hydrogen) and a carbon-containing gas (such as
acetylene, ethylene, ethanol or methane) are bled onto the reactor. Nanotubes grow at
the sites of the metal catalyst. (Most promising technique for commercial production)

M COST is supported E HHHHHHH ESF provides the COST Office
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Carbon nanomaterials

Carbon nanotubes
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Carbon nanomaterials

Carbon nanotubes

286.0 285.5 2850 2845 284.0 283.5
Binding Energy (eV)

Electronic spectra affected by NO, as
revealed by photoemission spectra

Rl COST is supported
g by the EU Framework Programme

Sensitivity to O,, H,O and CO may be
induced by the presence of
contaminants (Na), catalysts or defect
sites and open tube caps.

Cleaning process: Annealing at
1270 K in ultra high vacuum:
Removes impurities, restores
nanotube structure and closes
nanotube caps.

A. Goldoni, JACS 125 (2003) 11329

Cleaning of CNT surface and control
of surface defects needed for
consistent sensitivity

E HHHHHHH ESF provides the COST Office
EL'.E.{.\'E fffff through a European Commission contract



Gas sensors employing carbon nanomaterials

Carbon nanotubes
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Carbon nanomaterials

Carbon nanotubes

Au binding energy:
Pristine CNT: 0.73 eV
Isolated Au pair: 1.39 eV
VO,:1.29 eV.

s |
Pd (top) and Au (bottom) decorated MWCNTSs a) E. Liobet, Sens. Actuators B, 113 (2006) 36.

& C) pristine; b) & d) oxygen plasma treated E. Llobet, Nanotechnology 20 (2009) 375501 E.
Llobet, Carbon 48 (2010) 3477

COST is supported EuHDF‘EHN ESF provides the COST Office
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Gas sensors employing carbon nanomaterials

Carbon nanotubes

120 4 T T T T T T T T
1 200 ppb
100 100 ppb
50 ppb \ 7]
80 \ ]
£ w _-W | Rh-CNT sensor
o 1 Dry air ]
g 4] response to benzene
c) ™ d) A b HHeating +[Heatingz + Heating N
i i i 20 |
gl s o
Bl L 4
.ll + - L <0 PRI i 0= — ——— 1
T S W g T | ) A A T Tl g bty | Dry ail Ty air
S . - o , J - -2200 T T T T T D? Mr' T T ? du—' T T T T
20 40 80 80 100 120 140 160 180
1 . . 5 g Time (min)
Figure 4. Ball-and-stick models illustrating fully ab initio
optimized atomic structures of a (5,5) SWNT decorated with
a Au,sznanocluster (a) and with various adsorbed molecules: 7
NO; (b), CO (c), and CeHe (d). A i
—m— Pt
@ °7—A—Rnh
TABLE 1. Computed Binding Energies (Eg, eV), Charge 5§ 41— 0z
Transfer (Aq, |e|), Au,s—SWNT Bond Length (d,,, A), and % 3
Molecule—Au, ; Bond Length (dgas, A) &
2
Fy — 2444 —3257 —1821 —0.193 0 * —= . =
y 238 2.3 235 238 0 100 200 300 400 500 600
s 2.13 210 3.88 Concentration (ppb)
Aqd’ 0.06 0.506 0.164 ~0.0
? Positive (negative) values of Ag denote an acceptor (donor) character of the E. Llobet, ACS Nano, 6 (201 1 ) 4592
corresponding adsorbed molecule. E. Llobet, Anal.Chim.Acta 708 (2011) 19
COST is supported EUHDPEHN ESF provides the COST Office
by the EU Framework Programme SlNGaTIaN through a European Commission contract




Carbon nanomaterials

Carbon nanotubes

Figure 4. Ball-and-stick models illustrating fully ab initio
optimized atomic structures of a (5,5) SWNT decorated with
a Au3 nanocluster (a) and with various adsorbed molecules:
NO: (b}, CO (c), and CsHe (d).

TABLE 1. Cumputed. Binﬂing Energies (Eg, eV), Charge
Transfer (Agq, |e|), Au,5—SWNT Bond Length (d,,, A), and
Molecule—Au, s Bond Length (dga., A)

Auyy N0, [41] CHg
Ea — 2444 —3.257 —1.821 —0.193
g 238 2.3 235 238
dgﬂ 2.13 210 1.88
Af 0.06 0.506 0.164 ~0.0

? Positive (negative) values of Aq denote an acceptor (donor) character of the
corresponding adsorbed malecule,

COST is supported
by the EU Framework Programme
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Gas sensors employing carbon nanomaterials

Carbon nanotubes
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Gas sensors employing carbon nanomaterials

Carbon nanotubes 8
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cyclodextrin (PCD) for detection of persistent Aldrin 5.6
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J. Liu, J Mater. Chem., 21 (2011) 11109 HCB 1.6
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Gas sensors employing carbon nanomaterials

Carbon nanotubes
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Fig. 1 Schematic representation of synthesis of PCD and preparation of SWCNT-PCD hybnds.

SWCNT decorated with an aminophenylamino
cyclodextrin (PCD) for detection of persistent
organic compounds
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Gas sensors employing carbon nanomaterials
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Gas sensors employing carbon nanomaterials

Carbon nanotubes
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Circular Disk resonator with SWNTs
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FlexibleCNT sensors
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Figure 1. (A) Field-effect SEM image of inkjet-printed CNTs on PET 80 . .
(CNT/PET). The inset shows an array of 10 inkjet-printed CNT/ ¢ .
PET sensors. (B) Plot of resistance vs bending angle for CNT/PET _ 60 . 40r . _
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Figure 2. (A, B) Plots of resistance (R) vs time for successively
A. Ammu et al., JACS 134 decreasing concentrations of NO, vapor for inkjet-printed (A) CNT/
(2012) 4553 PET and (B) CMT/paper films. NO, vapor was present at point “a”

and removed at point “b”. Numbers on valleys represent the vapor
concentrations in ppm. (C, D) Plots of AR/R vs concentration for
M COST is supported inkjet-printed (C) CNT/PET and (D) CNT/paper films. The 1111~.etb
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Carbon nanomaterials

Graphene

Graphene is a flat monolayer of carbon atoms tightly
packed into a two-dimensional (2D) honeycomb
lattice, and is a basic building block for graphitic
materials of all other dimensionalities.

K.S. Novoselov, Nature Mat, 6 (2007) 183

Graphene can be obtained by exfoliation of graphite, by epitaxial growth on SiC
substrates, graphite oxide reduction, from graphite by sonication, ...

Graphene shows very high carrier mobility and very low noise

Rl COST is supported EUHDPEHN ESF provides the COST Office
g by the EU Framework Programme SlNGaTIaN through a European Commission contract



Carbon nanomaterials

Graphene
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Gas sensors employing carbon nanomaterials

Graphene
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Gas sensors employing carbon nanomaterials

Graphene

(b)

Graphene

Conventional nanolithography (EBL) leaves
residues that influence response. Cleaning in
H2/Ar reveals the properties of pristine devices.

Graphene shows low response to gases!
e.g. Reduced graphene oxide shows ppb
sensitivity to warfare agents,explosives and NO

(J.T. Robinson, Nano Lett., 8 (2008) 3137 R.B.
Kaner, ACS Nano, 3 (2009) 301 L. Liu,
ACS Nano 5 (2011) 6955)

Rl COST is supported
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Singlefatdm sUbst.ituted' graphene

bivacancies selectively created by confining the kinetic energy of incoming atoms

Vacancy filling with different dopants (N, B, Pt, Co, In) by ion beam or sputtering

H. Wang et al., Nano Lett. 12 (2012) 141

Rl COST is supported EUHDPEHN ESF provides the COST Office
g by the EU Framework Programme ST through a European Commission contract



Laser scribed graphene

Transferred hr-LSG
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NO, detection using all-organic flexible w3 1
interdigitated electrodes. The sensor uses hr-LSG Hinairatn)

as the active electrodes and marginally laser-
reduced graphite oxide as the detecting media.
The NO, concentration is 20 ppm in dry air gas.

o

V. Strong et al., ACS Nano, 6 (2012) 1395
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Pristine'graphene transistor

~ Noise in Graphene Devices

methanol acetonitrile

chloroform 1

Frequency f (Hz)
The low-frequency noise spectra of
graphene is affected by vapors of different
chemicals by inducing Lorentzian

S. Rumuantsev et al., Nano Lett., 12 (2012) components with distinctive features.
2294

Figure 1. Scanning electron microscopy images of back-gated
graphene devices with different number of top electrodes. In the
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Polycrystalllne graphene rifbbons
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Figure 1. (A and B) AFM images of CVD graphene used for sensors, color scales are 10 and
5 nm, respectively, (C) Raman spectra of pristine and CVD-based “defective” graphene samples, C_Ompar_able to the
(D) map of lyp/lc ratio indicating our CVD process produces mono to few layer graphene, dimensions of line defects
(E) map of crystallite size indicative of 30 to >300 nm distance between line defects with an average : TN
L, ~ 80 nm (see text), and (F) Scanning electron microscopy image of CVD graphene ribbons. Increases SenSItIVIty to ppb

levels.
A. Salehi-Khojin et al., Adv. Mat., 24 (2012)
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Conclusions and outlook

« Carbon nanomaterials show interesting properties for trace
detection of ambient pollutants

* There is a need for cost-effective, scalable production
methods that retain the essential properties of such materials

* Functionalisation (surface engineering) is the way to increase
sensitivity and minimize unwanted effects

« Carbon nanomaterials could be used in ultra-low power RFID
tags for ubiquitous environmental monitoring




Conclusions and outlook (ll)

TTTETR
* Single atom substitution brings about accurate control of surface

properties of graphene

« Electrospinning of carbon nanofibers or laser scribed graphene are
scalable techniques for producing unexpensive AQC sensors for
mass market applications

« The previous techniques are well adapted for producing sensors on
flexible substrates

« The analysis of low-frequency noise in carbon nanomaterials and,
particularly, in graphene can be of interest for increasing selectivity




